SimUSanté Instances Generator

Simon CAILLARD

15 janvier 2020

This document presents SimUProb instances (SimUSanté Instances) used in [1]. They are generated from the classic instances of the Curriculum BasedCourse TimeTabling problem (CB-CTT) [2]. Part 1 of this document describes the instances of CB-CTT, SimUProb and gives the different steps to transform the first one into the second one. Part 2 presents the different criterion used to obtain various SimUSanté instances from a CB-CTT instance.

1 CB-CTT to SimUsanté instances

1.1 CB-CTT instances

SimUSanté problem differs from CB-CTT mainly in terms of soft constraints, and then this part of CB-CTT instances are not considered by our generation method. Only, resources, classes, teachers, events and time slots are used.

A CB-CTT instance is structured as follows :
$-T^{\prime}$ is a set of time slots.

- C is a set of classes, and each $c \in C$ follows a set of events $\Omega_{c} . \bigcup_{c \in C} \Omega_{c}=$ Ω.
- Each event $\omega \in \Omega$ has a duration duration $_{\omega}$ and a preassigned teacher.
- Each event ω belongs to a course K.
$-R^{r^{\prime}}$ is a finite set of rooms.
- $R^{e^{\prime}}$ is a finite set of teachers. Each teacher is pre-assigned to one event.

1.2 Transformation process

From a CB-CTT instance named $C B$, this process aims to generate an initial SimUProb instance $C B-D_{0} T_{0} C_{0} A_{0}$. This process is divided in two phases. The first one, explained in subsection 1.2.1, splits or merges some events of $C B$. Indeed, in SimUSanté problem, the duration of activities are mainly between 2 and 4 time slots and then, events of $C B$ with duration less than 2 time slots are grouped, while those with duration greater than 4 time slots are splited. These changes are made by function splitAndMerge() described in algorithm 1. The second phase, as shown in subsection 1.2.2, generates $C B-D_{0} T_{0} C_{0} A_{0}$ by adding the elements specific to SimUSanté problem, like break time slots, resource types, etc.

1.2.1 First phase : function splitAndMerge

From a set of events Ω, splitAndMerge () selects each event ω with duration greater or equal to 4 and split them in two sub events ω^{\prime} and $\omega^{\prime \prime}$ with almost the same duration, such that duration ${ }_{\omega}=$ duration $_{\omega^{\prime}}+$ duration $_{\omega^{\prime \prime}}$. A precedence relation is then added between ω^{\prime} and $\omega^{\prime \prime}$.

In addition, events with duration of 1 time slot are merged two by two. When there is only one remaining event ω of duration 1 , this one is merged with a randomly chosen event $\omega^{\prime} \neq \omega$, of duration fewer than 4 . The merge is done by function fusion(). From a couple of events (ω, ω^{\prime}), fusion() returns an event $\omega^{\prime \prime}$ whose duration duration $\omega_{\omega^{\prime \prime}}=$ duration $_{\omega}+$ duration $_{\omega^{\prime}}$. A pre-assigned teacher is then chosen from that of events ω and ω^{\prime} to be assigned to event $\omega^{\prime \prime}$, ditto for rooms.

```
Algorithm 1 : splitAndMerge
Require: \(\Omega\) the set of events from a CB-CTT instance
Ensure: \(\Omega^{\text {new }}\) the set of events after transformation
    \(\Omega^{n e w} \leftarrow \emptyset\)
    \(\Omega_{1} \leftarrow \emptyset\)
    for all \(\omega \in \Omega\) do
        pred \(_{\omega} \leftarrow \emptyset\)
        if duration \(_{\omega}>4\) then
            \(\omega^{\prime} \leftarrow \omega\)
            \(\omega^{\prime \prime} \leftarrow \omega\)
            duration \(_{\omega^{\prime}} \leftarrow\left\lceil\frac{\text { duration }_{\omega}}{2}\right\rceil\)
            duration \(_{\omega^{\prime \prime}} \leftarrow\) duration \(_{\omega}-\) duration \(_{\omega^{\prime}}\)
            \(\operatorname{pred}_{\omega^{\prime \prime}} \leftarrow\left\{\omega^{\prime}\right\}\)
            \(\Omega^{\text {new }} \leftarrow \Omega^{\text {new }} \cup\left\{\omega^{\prime}, \omega^{\prime \prime}\right\}\)
        else
            if duration \(_{\omega}=1\) then
                \(\Omega_{1} \leftarrow \Omega_{1} \cup \omega\)
            else
                \(\Omega^{\text {new }} \leftarrow \Omega^{\text {new }} \cup \omega\)
            end if
        end if
    end for
    while \(\Omega_{1} \neq \emptyset\) do
        \(\omega^{\prime} \leftarrow \operatorname{random}\left(\Omega_{1}\right)\)
        \(\Omega_{1} \leftarrow \Omega_{1} \backslash\left\{\omega^{\prime}\right\}\)
        if \(\Omega_{1} \neq \emptyset\) then
            \(\omega^{\prime \prime} \leftarrow \operatorname{random}\left(\Omega_{1}\right)\)
            \(\Omega_{1} \leftarrow \Omega_{1} \backslash\left\{\omega^{\prime \prime}\right\}\)
            \(\Omega^{\text {new }} \leftarrow \Omega^{\text {new }} \cup\) fusion \(\left(\omega^{\prime}, \omega^{\prime \prime}\right)\)
        else
            \(\omega^{\prime \prime} \leftarrow \operatorname{random}\left(\Omega^{\text {new }}\right)\)
            \(\Omega^{\text {new }} \leftarrow \Omega^{\text {new }} \backslash\left\{\omega^{\prime \prime}\right\}\)
            \(\Omega^{\text {new }} \leftarrow \Omega^{\text {new }} \cup\) fusion \(\left(\omega^{\prime}, \omega^{\prime \prime}\right)\)
        end if
    end while
    return \(\Omega^{\text {new }}\)
```


1.2.2 Second phase : Generation process

From a CB-CTT instance $C B$, an initial SimUProb instance $C B-D_{0} T_{0} C_{0} A_{0}$ is generated. This instance remains as close as possible to the original one but adds all characteristics relative to SimUProb and it is constructed as follow :

- There are $D=\left\lceil\frac{\left|T^{\prime}\right|}{8}\right\rceil$ days. Each day is composed by $8+1$ time slots (one break time slot is added in our instances). Then, horizon H is a set of $|D| \times 9$ time slots.
- S is the set of sessions, then $S=C$. Each class c corresponds to a session s.
$-\forall s \in S, A_{s}=\Omega_{c}^{\text {new }}$ and $\bigcup_{s \in S} A_{s}=A$. Each event ω coincides with an activity a, then duration $_{a}=$ duration $_{\omega}$.
- $\forall\left(a, a^{\prime}\right) \in A^{2}$ such that the corresponding events $\left(\omega, \omega^{\prime}\right) \in \Omega^{2}$ are in a same course K, we generate a precedence relation between a and a^{\prime}.
- $R^{r}=R^{r^{\prime}}$ is the set of rooms. There is only one type of rooms $\lambda_{r_{1}}$ and $\forall a \in A, q t r e q_{\lambda_{r_{1}}}^{a}=1 . \Lambda^{r}=\left\{\lambda_{r_{1}}\right\}$ represents the set of types associated to room r, and Λ^{R} is the set of room types.
- $R^{e}=R^{e^{\prime}}$ is the set of employees and $\forall e \in R^{e}$, we define a type of employee λ_{e} which corresponds to the skills of employee $e . \Lambda^{e}=\left\{\lambda_{e}\right\}$ represents the set of types associated to employee e and $\Lambda^{E}=\sum_{e \in E} \lambda_{e}$ is the set of employee types. $\forall \omega \in \Omega^{\text {new }}$, if event ω was pre-assigned to employee e, then corresponding activity $a \in A$ is associated to employee type λ_{e} and q treq $q_{\lambda_{e}}^{a}=1$. dispo_{e} represents the disponibilities of employee e and $\forall e \in E$, dispo $_{e}=H$.

2 Criterion variation

From $C B-D_{0} T_{0} C_{0} A_{0}$, a set of SimUProb instances are generated, varying the following criteria : availability of employees $\left(D_{1}\right)$, types of rooms $\left(T_{1}, T_{2}\right)$, types of employees $\left(C_{1}\right)$ and activity requirements $\left(A_{1}, A_{2}\right)$.

These criteria are combined to provide different instances. As an illustration, $D_{0} T_{0} C_{0} A_{0}+D_{1}$ provides a new instance $D_{1} T_{0} C_{0} A_{0}$ and $D_{1} T_{0} C_{0} A_{1}+T_{1}$ gives $D_{1} T_{1} C_{0} A_{1}$, etc. It should be noticed that some criteria are dependent to other ones. For example, criterion T_{1} adds news room types and criterion A_{1} uses these types. The details of these different criteria are described in the following subsections.

In subsections 2.1, 2.2, 2.3 and 2.4, function $\operatorname{selection}(i, S)$ returns a set of i\% randomly chosen elements from a set S of elements.

2.1 Criterion C

This criteria concerns the skills (types) of employees. The aim is to add one skill to a set of 20% of randomly chosen employees denoted E_{20}. In addition, with a probability of 20%, each employee $e \in E_{20}$ has an additional skill. Algorithm 2 describes function Criterion C.

```
Algorithm 2 : CriterionC
Require: \(R^{E}\)
    \(E_{20} \leftarrow \operatorname{selection}\left(20, R^{e}\right)\)
    for all \(e \in E_{20}\) do
        firstSkill \(\leftarrow \operatorname{random}\left(\Lambda^{E} \backslash \Lambda^{e}\right)\)
        \(\Lambda^{e} \leftarrow \Lambda^{e} \cup\) firstSkill
        \(r \leftarrow \operatorname{random}(0,1)\)
        if \(r \geq 0,8\) then
            secondSkill \(\leftarrow \operatorname{random}\left(\Lambda^{E} \backslash \Lambda^{e}\right)\)
                \(\Lambda^{e} \leftarrow \Lambda^{e} \cup\) secondSkill
        end if
    end for
```


2.2 Criterion D

In the basic transformed instance $D_{0} T_{0} C_{0} A_{0}$, employees are avalaible over all the horizon H (full disponibilities). Criterion D_{1} aims to reduce avalaibilities of 20% of randomly selected employees. Their patterns of disponibilities are randomly replaced by one of those below :
pattern ${ }_{1}^{H}$: the first $\left\lceil\frac{|H|}{2}\right\rceil$ time slots.
pattern $_{2}^{H}$: the five first time slots of each day $d \in D$ (morning).
pattern ${ }_{3}^{H}$: the last $\left\lceil\frac{|H|}{2}\right\rceil$ time slots.
pattern ${ }_{4}^{H}$: the four last time slots of each day $d \in D$ (afternoon).
Algorithm 3 gives the details of function criterion D.

```
Algorithm 3 : Criterion \(D\)
Require: \(R^{e}, H\)
    \(E_{20} \leftarrow \operatorname{selection}\left(20, R^{e}\right)\)
    for all \(e \in E_{20}\) do
        dispo \(_{e} \leftarrow \operatorname{random}\left(\left\{\right.\right.\) pattern \(_{1}^{H}\), pattern \(_{2}^{H}\), pattern \(_{3}^{H}\), pattern \(\left.\left._{4}^{H}\right\}\right)\)
    end for
```


2.3 Criterion T

In version T_{1}, two new room types $\lambda_{r_{2}}$ and $\lambda_{r_{3}}$ are added. 15% of randomly selected rooms replace their type by $\lambda_{r_{3}}$ and 35% by $\lambda_{r_{2}}$. It should be noticed that each room is associated to only one type of room. Room types requirements for activities are set accordingly.

In version $T_{2}, 10 \%$ of randomly selected rooms add a second type of room from Λ^{R}.

Algorithms 4 and 5 show respectively the details of function CriterionT1 and CriterionT2.

```
Algorithm 4 : CriterionT1
Require: \(R^{r}\), the set of rooms, \(\Lambda^{R}\), the set of room types.
    \(\Lambda^{R} \leftarrow \Lambda^{R} \cup\left\{\lambda_{r_{2}}, \lambda_{r_{3}}\right\}\)
    \(R_{15} \leftarrow \operatorname{selection}\left(15, R^{r}\right)\)
    \(R_{35} \leftarrow \operatorname{selection}\left(35, R^{r} \backslash R_{15}\right)\)
    \(A_{15} \leftarrow \operatorname{selection}(15, A)\)
    \(A_{35} \leftarrow \operatorname{selection}\left(35, A \backslash A_{15}\right)\)
    for all \(r \in R_{15}\) do
        Lambda \({ }^{r} \leftarrow\left\{\lambda_{r_{3}}\right\}\)
    end for
    for all \(r \in R_{30}\) do
        Lambda \({ }^{r} \leftarrow\left\{\lambda_{r_{2}}\right\}\)
    end for
    for all \(a \in A_{15}\) do
        \(\Lambda^{a} \leftarrow \Lambda^{a} \backslash \lambda_{r_{1}}\)
        qtreq \({\underset{\lambda_{r_{1}}}{a}}_{a}^{a}\)
        \(\Lambda^{a} \leftarrow \Lambda^{a} \cup\left\{\lambda_{r_{3}}\right\}\)
        qtreq \({\underset{\lambda}{\lambda_{3}}}_{a}^{\sim} \leftarrow 1\)
    end for
    for all \(a \in A_{30}\) do
        \(\Lambda^{a} \leftarrow \Lambda^{a} \backslash \lambda_{r_{1}}\)
        qtre \(q_{\lambda_{r_{1}}}^{a} \leftarrow 0\)
        \(\Lambda^{a} \leftarrow \Lambda^{a} \cup\left\{\lambda_{r_{2}}\right\}\)
        qtre \(q_{\lambda_{r_{2}}}^{a} \leftarrow 1\)
    end for
```

```
Algorithm 5 : CriterionT2
Require: \(R\), the set of rooms.
    \(R_{10} \leftarrow \operatorname{selection}\left(10, R^{r}\right)\)
    for all \(r \in R_{10}\) do
        \(\Lambda^{r} \leftarrow \operatorname{Lambda} a^{r} \cup \operatorname{random}\left(\Lambda^{R} \backslash \Lambda^{r}\right)\)
    end for
```


2.4 Criterion A

Let A_{10} the set of 10% randomly chosen activities which will be modified by criterion A_{1} and $A_{2} . \forall a \in A_{10}, \Lambda^{a}$ represents the set of type requirements (employee and room) of activity a.

In version A_{1}, each activity $a \in A_{10}$ has a probability of 50% to increase by one the quantity of its actual room types requirement (i.e. $\forall \lambda_{r} \in \Lambda^{a} \cap \Lambda^{R}$, $q \operatorname{tre} q_{\lambda_{r}}^{a} \leftarrow q$ treq $q_{\lambda_{r}}^{a}+1$), or to add a new room type requirement $\lambda_{r^{\prime}}$, with $\lambda_{r^{\prime}} \notin \Lambda^{a} .\left(q t r e q_{\lambda_{r^{\prime}}}^{a} \leftarrow 1\right)$

Version A_{2} modifies employee types requirements of each activity of A_{10}. The modification process is the same as that of used by A_{1}.

We note in A_{1} and A_{2} that the maximal resource type quantity required by an activity can't exceed the quantity of resources associated to this type.

Algorithms 6 and 7 show respectively function Criterion A_{1} and Criterion A_{2}.

```
Algorithm 6 : Criterion \(A_{1}\)
Require: \(A_{10}\), a set of randomly pre-chosen activities
    for all \(a \in A_{10}\) do
        rand \(\leftarrow \operatorname{random}(0,1)\)
        if rand \(<0.5\) then
            for all \(\lambda_{r} \in \Lambda^{a} \cap \Lambda^{R}\) do
                \(q t r e q_{\lambda_{r}}^{a} \leftarrow q t r e q_{\lambda_{r}}^{a}+1\)
            end for
        else
            \(\lambda_{r^{\prime}} \leftarrow \operatorname{random}\left(\Lambda^{R} \backslash \Lambda^{a}\right)\)
            \(q\) tre \(q_{\lambda_{r^{\prime}}}^{a} \leftarrow q\) tre \(q_{\lambda_{r^{\prime}}}^{a}+1\)
        end if
    end for
```

```
Algorithm 7 : Criterion \(A_{2}\)
Require: \(A_{10}\), a set of randomly pre-chosen activities
    for all \(a \in A_{10}\) do
        rand \(\leftarrow \operatorname{random}(0,1)\)
        if rand \(<0.5\) then
            for all \(\lambda_{e} \in \Lambda^{a} \cap \Lambda^{E}\) do
                \(q \operatorname{tre} q_{\lambda_{e}}^{a} \leftarrow q t r e q_{\lambda_{e}}^{a}+1\)
            end for
        else
            \(\lambda_{e^{\prime}} \leftarrow \operatorname{random}\left(\Lambda^{E} \backslash \Lambda^{a}\right)\)
            \(q \operatorname{tre} q_{\lambda_{e^{\prime}}}^{a} \leftarrow q \operatorname{tre} q_{\lambda_{e^{\prime}}}^{a}+1\)
        end if
    end for
```


Références

[1] S. Caillard, L. Devendeville, and C. Lucet. A Planning Problem with Resource Constraints in Health Simulation Center. In Optimization of Complex Systems. Springer, 2020.
[2] EEMCS DMMP Group University of Twente. High School Timetabling Project. https ://www.utwente.nl/en/eemcs/dmmp/hstt/.

