
SimUSanté Instances Generator

Simon CAILLARD

15 janvier 2020

This document presents SimUProb instances (SimUSanté Instances) used
in [1]. They are generated from the classic instances of the Curriculum Based-
Course TimeTabling problem (CB-CTT) [2]. Part 1 of this document describes
the instances of CB-CTT, SimUProb and gives the di�erent steps to transform
the �rst one into the second one. Part 2 presents the di�erent criterion used to
obtain various SimUSanté instances from a CB-CTT instance.

1 CB-CTT to SimUsanté instances

1.1 CB-CTT instances

SimUSanté problem di�ers from CB-CTT mainly in terms of soft constraints,
and then this part of CB-CTT instances are not considered by our generation
method. Only, resources, classes, teachers, events and time slots are used.

A CB-CTT instance is structured as follows :

� T ′ is a set of time slots.
� C is a set of classes, and each c ∈ C follows a set of events Ωc.

⋃
c∈C Ωc =

Ω.
� Each event ω ∈ Ω has a duration durationω and a preassigned teacher.
� Each event ω belongs to a course K.
� Rr

′
is a �nite set of rooms.

� Re
′
is a �nite set of teachers. Each teacher is pre-assigned to one event.

1.2 Transformation process

From a CB-CTT instance named CB, this process aims to generate an initial
SimUProb instance CB − D0T0C0A0. This process is divided in two phases.
The �rst one, explained in subsection 1.2.1, splits or merges some events of CB.
Indeed, in SimUSanté problem, the duration of activities are mainly between 2
and 4 time slots and then, events of CB with duration less than 2 time slots
are grouped, while those with duration greater than 4 time slots are splited.
These changes are made by function splitAndMerge() described in algorithm
1. The second phase, as shown in subsection 1.2.2, generates CB −D0T0C0A0

by adding the elements speci�c to SimUSanté problem, like break time slots,
resource types, etc.

1

1.2.1 First phase : function splitAndMerge

From a set of events Ω, splitAndMerge() selects each event ω with duration
greater or equal to 4 and split them in two sub events ω′ and ω′′ with almost the
same duration, such that durationω = durationω′ + durationω′′ . A precedence
relation is then added between ω′ and ω′′.

In addition, events with duration of 1 time slot are merged two by two. When
there is only one remaining event ω of duration 1, this one is merged with a
randomly chosen event ω′ 6= ω, of duration fewer than 4. The merge is done by
function fusion(). From a couple of events (ω, ω′), fusion() returns an event ω′′

whose duration durationω′′ = durationω + durationω′ . A pre-assigned teacher
is then chosen from that of events ω and ω′ to be assigned to event ω′′, ditto
for rooms.

2

Algorithm 1 : splitAndMerge

Require: Ω the set of events from a CB-CTT instance
Ensure: Ωnew the set of events after transformation

Ωnew ← ∅
Ω1 ← ∅
for all ω ∈ Ω do

predω ← ∅
if durationω > 4 then

ω′ ← ω
ω′′ ← ω
durationω′ ← ddurationω

2 e
durationω′′ ← durationω − durationω′

predω′′ ← {ω′}
Ωnew ← Ωnew ∪ {ω′, ω′′}

else

if durationω = 1 then

Ω1 ← Ω1 ∪ ω
else

Ωnew ← Ωnew ∪ ω
end if

end if

end for

while Ω1 6= ∅ do
ω′ ← random(Ω1)
Ω1 ← Ω1 \ {ω′}
if Ω1 6= ∅ then
ω′′ ← random(Ω1)
Ω1 ← Ω1 \ {ω”}
Ωnew ← Ωnew ∪ fusion(ω′, ω′′)

else

ω′′ ← random(Ωnew)
Ωnew ← Ωnew \ {ω′′}
Ωnew ← Ωnew ∪ fusion(ω′, ω′′)

end if

end while

return Ωnew

1.2.2 Second phase : Generation process

From a CB-CTT instance CB, an initial SimUProb instance CB−D0T0C0A0

is generated. This instance remains as close as possible to the original one but
adds all characteristics relative to SimUProb and it is constructed as follow :

� There are D =
⌈
|T ′|
8

⌉
days. Each day is composed by 8 + 1 time slots

(one break time slot is added in our instances). Then, horizon H is a set
of |D| × 9 time slots.

3

� S is the set of sessions, then S = C. Each class c corresponds to a session
s.

� ∀s ∈ S, As = Ωnewc and
⋃
s∈S As = A. Each event ω coincides with an

activity a, then durationa = durationω.
� ∀(a, a′) ∈ A2 such that the corresponding events (ω, ω′) ∈ Ω2 are in a

same course K, we generate a precedence relation between a and a′.
� Rr = Rr

′
is the set of rooms. There is only one type of rooms λr1 and

∀a ∈ A, qtreqaλr1
= 1. Λr = {λr1} represents the set of types associated

to room r, and ΛR is the set of room types.
� Re = Re

′
is the set of employees and ∀e ∈ Re, we de�ne a type of

employee λe which corresponds to the skills of employee e. Λe = {λe}
represents the set of types associated to employee e and ΛE =

∑
e∈E λe

is the set of employee types. ∀ω ∈ Ωnew, if event ω was pre-assigned to
employee e, then corresponding activity a ∈ A is associated to employee
type λe and qtreq

a
λe

= 1. dispoe represents the disponibilities of employee
e and ∀e ∈ E, dispoe = H.

2 Criterion variation

From CB −D0T0C0A0, a set of SimUProb instances are generated, varying
the following criteria : availability of employees (D1), types of rooms (T1, T2),
types of employees (C1) and activity requirements (A1, A2).

These criteria are combined to provide di�erent instances. As an illustration,
D0T0C0A0 +D1 provides a new instance D1T0C0A0 and D1T0C0A1 + T1 gives
D1T1C0A1, etc. It should be noticed that some criteria are dependent to other
ones. For example, criterion T1 adds news room types and criterion A1 uses
these types. The details of these di�erent criteria are described in the following
subsections.

In subsections 2.1, 2.2, 2.3 and 2.4, function selection(i, S) returns a set of
i% randomly chosen elements from a set S of elements.

2.1 Criterion C

This criteria concerns the skills (types) of employees. The aim is to add one
skill to a set of 20% of randomly chosen employees denoted E20. In addition, with
a probability of 20%, each employee e ∈ E20 has an additional skill. Algorithm
2 describes function CriterionC.

4

Algorithm 2 : CriterionC

Require: RE

E20 ← selection(20, Re)
for all e ∈ E20 do

firstSkill← random(ΛE \ Λe)
Λe ← Λe ∪ firstSkill
r ← random(0, 1)
if r ≥ 0, 8 then

secondSkill← random(ΛE \ Λe)
Λe ← Λe ∪ secondSkill

end if

end for

2.2 Criterion D

In the basic transformed instance D0T0C0A0, employees are avalaible over
all the horizon H (full disponibilities). Criterion D1 aims to reduce avalaibilities
of 20% of randomly selected employees. Their patterns of disponibilities are
randomly replaced by one of those below :

patternH1 : the �rst d |H|
2 e time slots.

patternH2 : the �ve �rst time slots of each day d ∈ D (morning).

patternH3 : the last d |H|
2 e time slots.

patternH4 : the four last time slots of each day d ∈ D (afternoon).

Algorithm 3 gives the details of function criterionD.

Algorithm 3 : CriterionD

Require: Re, H
E20 ← selection(20, Re)
for all e ∈ E20 do

dispoe ← random({patternH1 , patternH2 , patternH3 , patternH4 })
end for

2.3 Criterion T

In version T1, two new room types λr2 and λr3 are added. 15% of randomly
selected rooms replace their type by λr3 and 35% by λr2 . It should be noticed
that each room is associated to only one type of room. Room types requirements
for activities are set accordingly.

In version T2, 10% of randomly selected rooms add a second type of room
from ΛR.

Algorithms 4 and 5 show respectively the details of function CriterionT1 and
CriterionT2.

5

Algorithm 4 : CriterionT1

Require: Rr, the set of rooms, ΛR, the set of room types.
ΛR ← ΛR ∪ {λr2 , λr3}
R15 ← selection(15, Rr)
R35 ← selection(35, Rr \R15)
A15 ← selection(15, A)
A35 ← selection(35, A \A15)
for all r ∈ R15 do

Lambdar ← {λr3}
end for

for all r ∈ R30 do

Lambdar ← {λr2}
end for

for all a ∈ A15 do

Λa ← Λa \ λr1
qtreqaλr1

← 0

Λa ← Λa ∪ {λr3}
qtreqaλr3

← 1

end for

for all a ∈ A30 do

Λa ← Λa \ λr1
qtreqaλr1

← 0

Λa ← Λa ∪ {λr2}
qtreqaλr2

← 1

end for

Algorithm 5 : CriterionT2

Require: R, the set of rooms.
R10 ← selection(10, Rr)
for all r ∈ R10 do

Λr ← Lambdar ∪ random(ΛR \ Λr)
end for

6

2.4 Criterion A

Let A10 the set of 10% randomly chosen activities which will be modi�ed
by criterion A1 and A2. ∀a ∈ A10, Λa represents the set of type requirements
(employee and room) of activity a.

In version A1, each activity a ∈ A10 has a probability of 50% to increase
by one the quantity of its actual room types requirement (i.e. ∀λr ∈ Λa ∩ ΛR,
qtreqaλr

← qtreqaλr
+ 1), or to add a new room type requirement λr′ , with

λr′ /∈ Λa. (qtreqaλr′
← 1)

Version A2 modi�es employee types requirements of each activity of A10.
The modi�cation process is the same as that of used by A1.

We note in A1 and A2 that the maximal resource type quantity required by
an activity can't exceed the quantity of resources associated to this type.

Algorithms 6 and 7 show respectively function CriterionA1 and CriterionA2.

Algorithm 6 : CriterionA1

Require: A10, a set of randomly pre-chosen activities
for all a ∈ A10 do

rand← random(0, 1)
if rand < 0.5 then

for all λr ∈ Λa ∩ ΛR do

qtreqaλr
← qtreqaλr

+ 1
end for

else

λr′ ← random(ΛR \ Λa)
qtreqaλr′

← qtreqaλr′
+ 1

end if

end for

Algorithm 7 : CriterionA2

Require: A10, a set of randomly pre-chosen activities
for all a ∈ A10 do

rand← random(0, 1)
if rand < 0.5 then

for all λe ∈ Λa ∩ ΛE do

qtreqaλe
← qtreqaλe

+ 1
end for

else

λe′ ← random(ΛE \ Λa)
qtreqaλe′

← qtreqaλe′
+ 1

end if

end for

7

Références

[1] S. Caillard, L. Devendeville, and C. Lucet. A Planning Problem with Re-
source Constraints in Health Simulation Center. In Optimization of Complex

Systems. Springer, 2020.

[2] EEMCS DMMP Group University of Twente. High School Timetabling
Project. https ://www.utwente.nl/en/eemcs/dmmp/hstt/.

8

